Skip to main content
Statistics LibreTexts

Analysis of variance approach to regression

  • Page ID
    229
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    We divide the total variability in the observe data into two parts - one coming from the errors, the other coming from the predictor.

    ANOVA Decomposition

    The following decomposition

    \[ Y_i - \overline{Y} = (\widehat{Y_i} - \overline{Y}) + (Y_i - \widehat{Y_i} )\]

    with \( i=1,2,...,n. \).

    represents the deviation of the observed response from the mean response in terms of the sum of the deviation of the fitted value from the mean plus the residual.

    Taking the sum of squares, and after some algebra we have:

    \[ \sum_{i=1}^n (Y_i - \overline{Y})^2 = \sum_{i=1}^n (\widehat{Y_i} -\overline{Y})^2 + \sum_{i=1}^n (Y_i - \widehat{Y_i})^2. \label{1}\]

    or

    \[ SSTO = SSR +SSE\]

    where

    \[SSTO = \sum_{i=1}^n (Y_i - \overline{Y})^2 \]

    and

    \[SSR = \sum_{i=1}^n (\widehat{Y_i} -\overline{Y})^2. \label{2}\]

    is referred to as the ANOVA decomposition to the variation in the response. Note that

    \[ SSR = b_1^2 \sum_{i=1}^n (X_i - \overline{X})^2 .\]

    Degrees of freedom

    The degrees of freedom of different terms in the decomposition Equation \ref{2} are

    \[df( SSTO ) = n - 1\]

    \[df( SSR ) = 1\]

    \[df( SSE ) = n - 2. \]

    So,

    \[df( SSTO ) = d.f.( SSR ) + d.f.( SSE ). \]

    Expected value and distribution

    \( E ( SSE ) = ( n - 2) \sigma^2, \) and \( E ( SSR ) = \sigma^2 + \beta_1^2 \sum_{i=1}^n (X_i - \overline{X})^2. \) Also, under the normal regression model, and under \( H_0 : \beta_1 = 0, \)

    \[ SSR \sim \sigma^2 \chi_1^2, SSE \sim \sigma^2 \chi_{n-2}^2, \]

    and these two are independent.

    Mean squares

    \[ MSE = \dfrac{SSE}{d.f.(SSE)} = \dfrac{SSE}{n-2}, MSR = \dfrac{SSR}{d.f.(SSR)} = \dfrac{SSR}{1}. \]

    Also, \( E ( MSE ) = \sigma^2 , E ( MSR ) = \sigma^2 + \beta_1^2 \sum_{i=1}^n (X_i - \overline{X})^2. \)

    F ratio

    For testing \( H_0 : \beta_1 = 0 \) versus \( H_1 : \beta_1 \neq 0, \) the following test statistics, called the F ratio, can be used:

    \[ F^* = \dfrac{MSR}{MSE}. \]

    The reason is that \( \dfrac{MSR}{MSE} \) fluctuates around 1 + \( \dfrac{ \beta_1^2 \sum_{i=1}^n (X_i - \overline{X})^2 }{\sigma^2}. \) So, a significantly large value of \(F^*\) provides evidence against \(H_0\) and for \(H_1.\)

    Under \(H_0, F^* \) has the \(F\) distribution with paired degrees of freedom (d.f.( SSR ), d.f.( SSE )) = (1, n - 2 ), (written \(F^* \sim F_{1, n - 2}). \) Thus, the test rejects \(H_0\) at level of significance \(\alpha\) if \(F^* > F( 1 - \alpha; 1, n - 2 ), \) where \(F( 1 - \alpha; 1, n - 2 ) \) is the \( (1 - \alpha ) \) quantile of \(F_{1; n - 2} \) distribution.

    Relation between F-test and t-test

    Check that \( F^* = ( t^* )^2. \) where \( t^* = \dfrac{b_1}{s ( b_1 )} \) is the test statistic for testing \(H_0 : \beta_1 = 0 \) versus \(H_1 : \beta_1 \neq 0. \) So, the F-test is equivalent to the t-test in this case.

    ANOVA table

    It is a table that gives the summary of the various objects used in testing \(H_0 : \beta_1 = 0 \) against \(H_1 : \beta_1 \neq 0.\) It is of the form:

    Source df SS MS F*
    Regression d.f.(SSR) = 1 SSR MSR \(\dfrac{MSR}{MSE} \)
    Error d.f.(SSE) = n - 2 SSE MSE
    Total d.f.(SSTO) = n - 1 SSTO

    Example \(\PageIndex{1}\): housing price data

    We consider a data set on housing prices. Here Y = selling price of houses (in $1000), and X = size of houses (100 square feet). The summary statistics are given below:

    $$ n = 19, \overline{X} = 15.719, \overline{Y} = 75.211, $$

    \( \sum_i ( X_i - \overline{X} )^2 = 40.805, \sum_i ( Y_i - \overline{Y} )^2 = 556.078, \sum_i ( X_i - \overline{X} ) ( Y_i - \overline{Y} ) = 120.001. \)

    (Example) - Estimates of \(\beta_1 \) and \(\beta_0\)

    \( b_1 = \dfrac{\sum_i ( X_i - \overline{X} ) ( Y_i - \overline{Y} ) }{\sum_i ( X_i - \overline{X} )^2} = \dfrac{120.001}{40.805} = 2.941. \)

    and

    \( b_0 = \overline{Y} - b_1 \overline{X} = 75.211 - (2.941)(15.719) = 28.981. \)

    (Example) - MSE

    The degrees of freedom (d.f.) = \( n -2 = 17. SSE = \sum_i (Y_i - \overline{Y} )^2 - b_1^2 \sum_i ( X_i - \overline{X} )^2 = 203.17.\) So,

    \[ MSE = \dfrac{SSE}{n - 2} = {203.17}{17} = 11.95. \]

    Also, SSTO = 556.08 and SSR = SSTO - SSE = 352.91, MSR = SSR/1 = 352.91.

    \(F^* = \dfrac{MSR}{MSE} = 29.529 = (t^* )^2,\) where \(t^* = \dfrac{b_1}{s ( b_1 )} = \dfrac{2.941}{0.5412} = 5.434.\) Also, F( 0.95; 1, 17 ) = 4.45, t( 0.975; 17) = 2.11. So, we reject \(H_0 : \beta_1 = 0. \) The ANOVA table is given below.

    Source df SS MS F*
    Regression 1 352.91 352.91 29.529
    Error 17 203.17 11.95
    Total 18 556.08

    Contributors

    • Valerie Regalia
    • Debashis Paul

    This page titled Analysis of variance approach to regression is shared under a not declared license and was authored, remixed, and/or curated by Debashis Paul.

    • Was this article helpful?